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A new method called diffusion factorial moment is used to obtain scaling features embedded in the spectra
of complex networks. For an Erdos-Renyi network with connecting probability pER�1/N, the scaling param-
eter is �=0.51, while for pER�1/N the scaling parameter deviates from it significantly. For WS small-world
networks, in the special region pr� �0.05,0.2�, typical scale invariance is found. For growing random net-
works, in the range of �� �0.33,049�, we have �=0.6±0.1. And the value of � oscillates around �=0.6
abruptly. In the range of �� �0.54,1�, we have basically ��0.7. Scale invariance is one of the common
features of the three kinds of networks, which can be employed as a global measurement of complex networks
in a unified way.
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I. INTRODUCTION

In recent years, complex networks have attracted special
attention from diverse fields of research �1�. Though several
measurements such as degree distribution, shortest connect-
ing paths, and clustering coefficients, have been used to char-
acterize complex networks, we are still far from a complete
understanding of all peculiarities of their topological struc-
tures. Finding new characteristics is still an essential role at
the present time.

We describe the structure of a complex network with the
associated adjacency matrix. Map this complex network with
N nodes to a large molecule, the nodes as atoms and the
edges as couplings between the atoms. Denote the states and
the corresponding site energies of the atoms with
��1� , �2� , . . . , �N�� and ��1 ,�2 , . . . ,�N�, respectively. Consider
a simple condition where the Hamiltonian of the molecule
reads

Hmn = �H0�mn + �Hcoupling�mn, �1�

where,

�H0�mn = �0�mn,

�Hcoupling�mn = 	1 − �mn �connected�
0 �disconnected� .


 �2�

In this way a complex network is mapped to a quantum
system and the corresponding associated adjacency matrix is
mapped to the Hamiltonian of this quantum system.

The structure of a complex network determines its spec-
trum. The characteristics of this spectrum can reveal the
structure symmetries, which can be employed as global mea-

surements of the corresponding complex network �2–12�. In
our recent papers �13–16�, several temporal series analysis
methods are used to extract characteristic features embedded
in the spectra of complex networks.

In the present paper, a new concept, called diffusion fac-
torial moment �DFM�, is proposed to obtain scale features in
spectra of complex networks. It is found that these spectra
display scale invariance, which can be employed as a global
measurement of complex networks in a unified way. It may
also be helpful for us to construct a unified model of com-
plex networks.

II. DIFFUSION FACTORIAL MOMENT (DFM)

We represent a complex network with its adjacency ma-
trix: A�G�. The main algebraic tool that we will use for the
analysis of complex networks will be the spectrum, i.e., the
set of eigenvalues of the complex network’s adjacency ma-
trix, called the spectrum of the complex network, denoted
with �Em �m=1,2 , . . . ,N�. Connecting the beginning and the
end of this spectrum, we can obtain a set of delay register
vectors as �13�,

�E1 − E0,E2 − E1, . . . ,En − En−1�

�E2 − E1,E3 − E2, . . . ,En+1 − En�

]

�EN − EN−1,E0 − EN, . . . ,En−2 − En−3�

�E0 − EN,E1 − E0, . . . ,En−1 − En−2� �3�

Considering each vector as a trajectory of a particle dur-
ing n time units, all of the above vectors can be regarded as
a diffusion process for a system with N+1 particles �17�.
Accordingly, for each time denoted with n we can under-
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stand the distribution of the displacements of all the particles
as the state of the system at time n.

Dividing the possible range of displacements into
M0 bins, the probability distribution function �PDF�
can be approximated with pm�Km /�mKm, where Km�n� �m
=1,2 , . . . ,M0 is the number of particles whose displace-
ments fall in the mth bin at time n. To obtain a suitable M0,
the size of a bin is chosen to be a fraction of the variance,

� =
�k=1

N+1
�Ek − Ek−1�2

N + 1
.

If the series constructed with the nearest neighbor level
spacings, �E1−E0 ,E2−E1 , . . . ,E0−EN� is a set of homoge-
neous random values without correlations with each other,
the PDF should tend to be a Gaussian form when the time n
becomes large enough. Deviations of the PDF from the
Gaussian form reflect the correlations in the time series.
Here, we are especially interested in the scale features in the
spectra of complex networks.

Generally, the scale features in spectra of complex net-
works can be described with the concept of probability mo-
ment �PM� defined as �18�

Cq�n� = �
m=1

M0

�pm�q, �4�

where pm is the probability for a particle occurring in the mth
bin. Assume that the PDF takes the form

pm�n� =
1

n�F� m

n�� . �5�

An easy algebra leads to

ln Cq�n� = A + ��1 − q�ln�n� . �6�

If the considered series is completely uncorrelated, the
resulting diffusion process will be very close to the condition
of ordinary diffusion, where �=0.5 and the function F�m /n��
in the PDF is a Gaussian function of m /n�. ��0.5 can reflect
the departure of the diffusion process from this ordinary dif-
fusion condition �19�. The extreme condition is the ballistic
diffusions, whose PDFs read pm�n�= �1/n�F�m /n�. The val-
ues of � at this condition are 1.

However, the approximation of PDF pm�Km /�mKm in
the above computational procedure will induce statistical
fluctuations due to the finite number of particles, which may
become a fatal problem when we deal with the spectrum of a
complex network. The dynamical information may be
merged by the strong statistical fluctuations completely. Cap-
turing the dynamical information from a finite number of
cases is a nontrivial task.

This problem is first considered by Bialas and Peschanski
in analyzing the process of high energy collisions, where
only a small number of cases can be available. A concept
called factorial moment �FM� is proposed to find the inter-
mittency �self-similar� structures embedded in the PDF of
states �18,20–24�. The definition of FM reads

Fq�M� = �
m=1

M

Jm�Jm − 1� ¯ �Jm − q + 1� , �7�

where M is the number of the bins the displacement range is
being divided into and Jm the number of particles whose
displacements fall in the mth bin.

Stimulated by the concept of FM, we propose in this pa-
per a new concept called DFM, which reads

DFMq�n� = �
m=1

M0

Km�Km − 1� ¯ �Km − q + 1� . �8�

Herein we present a simple argument for the ability of DFM
to filter out the statistical fluctuations due to a finite number
of cases �20,21�. The statistical fluctuations will obey Ber-
noulli and Poisson distributions for a system containing un-
certain and certain total number of particles, respectively. For
a system containing uncertain total number of particles, the
distribution of particles in the bins can be expressed as

Q�K1,K2, . . . ,KM0
�p1,p2, . . . ,pM0

�

=
K!

K1!K2! ¯ KM0
!
p1

K1p2
K2
¯ pM0

KM0, �9�

where K=K1+K2+ ¯ +KM0
. Hence,

�Km�Km − 1� ¯ �Km − q + 1��

=� dp1dp2 ¯ dpM0
P�p1,p2, . . . ,pM0

�

��
K1

�
K2

¯ �
KM0

Q�K1,K2, . . . ,KM0
�p1,p2, . . . ,pM0

� ,

Km�Km − 1� ¯ �Km − q + 1�

= K�K − 1��K − 2� ¯ �K − q + 1�

�� dp1dp2 ¯ dpM0
· P�p1,p2, . . . ,pM0

�pm
q

= K�K − 1� ¯ �K − q + 1��pm
q � �10�

That is to say

DFMq�n� 	 Cq�n� . �11�

And consequently, Eq. �6� becomes

ln DFMq�n� = C + ln Cq�n� = B + ��1 − q�ln�n� . �12�

Therefore, DFM can reveal the strong dynamical fluctuations
embedded in a time series and filter out the statistical fluc-
tuations effectively. We will use the DFM instead of the PM
to obtain the scale features in the spectrum of a complex
network.

It should be pointed out that the scale features in
our DFM is completely different from that in FM. The
FM reveals the self-similar structures with respect to the
number of the bins the possible range of the displacements is
being divided into, i.e., the scale is the displacement. In
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DFM, the considered scale is the time n. At time n, the
state of the system is �En−E0 ,En+1−E1 ,En+2−E2 , . . . ,EN

−EN−q ,E0−EN−q+1�.
In one of our recent works �13�, joint use of the detrended

fluctuation approach �DFA� and the diffusion entropy �DE� is
employed to find the correlation features embedded in the
spectra of complex networks. In that paper we review briefly
the relation between the scale invariance exponent, �, and the
long-range correlation exponent 
. For fractional Brownian
motions �FBM� and Levy walk processes, we have �=
 and
�=1/ �3−2·
�, respectively. Generally, we can not derive a
relation between these two exponents. Herein, we present the
relation between the concepts of DFM and DE. From the
probability moment in Eq. �4� we can reach the correspond-
ing Tsallis entropy STsallis which reads

STsallis�q� =
1 − �m=1

M0 �pm�q

1 − q
=

1 − Cq�n�
1 − q

. �13�

A trivial computation leads to the relation between the DE
�denoted with SDE�, the PM, and the Tsallis entropy, as fol-
lows:

SDE = lim
q→1

1 − �m=1

M0 �pm�q

1 − q
= lim

q→1

1 − Cq�n�
1 − q

= lim
q→1

STsallis�q� .

�14�

Hence DFM can detect multifractal features in spectra of
complex networks by adjusting the value of q. The DE is just
a special condition of DFM with q→1. What is more, the
DFM can filter out the statistical fluctuations due to finite
number of eigenvalues in the spectrum of a network.

The adjacency matrices are diagonalized with the Matlab
version of the software package PROPACK �25�.

III. RESULTS

Consider first the Erdos-Renyi model �26,27�. Starting
with N nodes and no edges, connect each pair with probabil-
ity pER. For pER�1/N the network is broken into many small
clusters, while for pER�1/N a large cluster can be formed,
which in the asymptotic limit contains all nodes �27�.
pc=1/N is a critical point for this kind of random network.

Figure 1 presents four typical results for Erdos-Renyi net-
works. For pER�1/N, the scaling exponent is �=0.51, which
is consistent with the random behavior of the spectrum. With
the increase of pER, � becomes larger and larger. The spec-
trum tends to display a significant scale invariance.

As one of the most widely accepted models to capture the
clustering effects in real world networks, the WS small-
world model has been investigated in detail �1,28–31�. Here
we adopt the one-dimensional lattice model. Take a one-
dimensional lattice of L nodes with periodic boundary con-
ditions, and join each node with its k right-handed nearest
neighbors. Going through each edge in turn, and with prob-
ability pr rewiring one end of this edge to a new node chosen
randomly. During the rewiring procedure double edges and
self-edges are forbidden.

FIG. 1. Four typical results for the Erdos-Renyi network mod-
el.The parameter q=3. Denote the size of a network with N. �a�
N=104, pER=0.8/N� pc. We have �=0.51, which is consistent with
the random behavior of the spectrum. The corresponding PDF is
Gaussian. �b� N=104, pER=1/N= pc. We have �=0.60, a slight de-
viation from random behavior. For �c� and �d� �N , pER ,��
= �4�103 ,4 /N ,0.68� and �4�103 ,8 /N ,0.87�, respectively.

FIG. 2. DFM for the two extreme conditions of the WS network
model, i.e., regular networks �pr=0� and the corresponding com-
pletely random networks �pr=1�. The size of a network N=3000.
And q=3. For these generated networks, when the number of right-
handed neighbors k is small the DFMs obey a power law.

FIG. 3. The values of the exponent � for the two extreme con-
ditions of the WS network model, i.e, the regular networks
�pr=0� and the corresponding completely random networks
�pr=1�. The size of a network N=3000 and q=3. The values of �
for the regular networks are in the range of 0.58±0.08, a slight
deviation from 0.5 that corresponds to a Gaussian distribution. The
values of � for the completely random networks are significantly
larger than that of the corresponding regular networks �with a few
exceptions�.
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Figures 2 and 3 show the results for two extreme condi-
tions of the WS network model, i.e., the regular networks
with different right-handed neighbors �pr=0� and the corre-
sponding completely rewired networks �pr=1�. When the
value of k is unreasonabley large �k=20,40,120�, the DFM
will not obey a power law. The scaling exponents for the
regular networks are basically in the range of
�=0.58±0.08, a slight deviation from that of the Gaussion
distribution. The scaling exponents for the completely re-
wired networks with k=2,3 ,4 ,6 ,7 are significantly larger
than that of the corresponding regular networks.

Four typical results for the networks generated with the
WS model with different rewiring probability values, as
shown in Fig. 4, illustrate the significant scale invariance in
the spectra of these WS networks.The values of � for these
generated networks with k=2 and k=5 are presented in Figs.
5 and 6, respectively. We are especially interested in the
rough range of pr� �0.05,2�, where the WS model can cap-
ture the characteristics of real-world networks. For the gen-
erated networks with k=2, in the range of pr� �0.05,0.2� we
have ��0.71±0.05. And in the condition of k=5, � is
0.85±0.05 in the range pr� �0.1,0.2�.

Consider thirdly the growing random network �GRN�
model �30,32� Take several connected nodes as a seed. At

each time step, a new node is added and a link to one of the
earlier nodes is created. The connection kernel Ak, defined as
the probability that a newly introduced node links to a pre-
existing node with k links, determines the structure of this
network. The considered complex networks are generated
with a class of homogeneous connection kernels
Ak	k��0���1�.

The arguments in the literature �32� show that there are
two critical points at �1= 1

3 and �2= 1
2 , which separate the

networks into four groups. The four groups are �0, 1
3

�, � 1
3 , 1

2
�,

� 1
2

� and � 1
2 ,1�. Figure 7 presents four typical results for the

GRN networks. From the values of � for GRN networks with
different �, shown in Fig. 8, we can find that at two points
�=0.33,0.49, we have �=0.53 and 0.52 �two minimum val-
ues�, respectively. In the range of �� �0.33,0.49�, we have
�=0.6±0.1. And the value of � oscillates around �=0.6
abruptly. In the range of �� �0.54,1�, we have basically
��0.7.

IV. SUMMARY

In summary, we introduced a new concept called DFM
and use it to reveal scale invariance features embedded in the

FIG. 4. Four typical results for WS small-world model. The
parameters q=3, k=2. The size of a network is 3000. �a� pr=0.0,
�=0.67; �b� pr=0.1, �=0.71; �c� pr=0.3, �=0.64; �d� pr=0.8,
�=0.80.

FIG. 5. The values of � for generated WS networks with differ-
ent rewiring probabilities. The parameters q=3, k=2. In the special
range of pr� �0.05,0.2�, where the WS small-world network model
can capture the characteristics of real-world complex networks, we
have ��0.71±0.05.

FIG. 6. The values of � for generated WS networks with differ-
ent rewiring probabilities. The parameters q=3, k=5. In the special
range of pr� �0.1,0.2�, where the WS small-world network model
can capture the characteristics of real world complex networks, we
have ��0.85±0.05.

FIG. 7. Four typical results for networks generated with the
GRN model. The parameter q=3. The size of a network is 4000. �a�
�=0.0, �=0.88; �b� �=0.33, �=0.53; �c� �=0.5, �=0.68; �d�
�=1.0, �=0.86.
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spectra of complex networks. For an Erdos-Renyi network
with connecting probability pER�1/N, the scaling exponent
is �=0.5, while for pER�1/N the scaling exponent deviates
from 0.5 significantly. For the regular networks generated
with the WS model with pr=0, the scaling exponents deviate
slight from 0.5, the value corresponding to the Gaussian
PDF. The other extreme condition is that the � values for the
random networks generated with the WS model with pr=1
are basically significantly larger than that for the correspond-
ing regular networks �there are few exceptions�. In the espe-
cially interested range of pr� �0.05,0.2�, where the WS
model can capture the properties of real-world networks, the
spectra display a typical scale invariance. Two critical points

are found for GRN �growing random network� networks at
�=0.33 and �=0.49, at which we have two minimum values
of �=0.53,0.52, respectively. In the range of �� �0.54,1�,
we have basically ��0.7. Hence we find self-similar struc-
tures in all the spectra of the considered three complex net-
work models. This common feature may be used as a new
measurement of complex networks in a unified way. Com-
parison with the regular networks and the Erdos-Renyi net-
works with pER� pc=1/N tells us that this self-similarity is
nontrivial.

The self-similar structures in the spectra shed light on the
scale symmetries embedded in the topological structures of
complex networks, which can be used to obtain the possible
generating mechanism of complex networks. Quasicrystal
theory tells us that the aperiodic structure of the lattice will
induce a fractal structure in the corresponding spectrum. The
most possible candidate feature shared by all the complex
networks constructed with the three models may be fractal
characteristics, which has been proved in a very recent paper
�33�. Based upon this feature, we may construct a unified
model of complex networks.
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